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Abstract. The solution of the Bukhvostov–Lipatov model is completed by computing the physical
excitations and their factorizedS matrix. The origin of the paradoxes which led in recent years to
the suspicion that the model may not be integrable is also explained.

In a famous paper of 1981, Bukhvostov and Lipatov (BL) [1] presented pieces of the solution
to a very interesting quantum field theory model, whosebareLagrangian reads

L = ψ̄1(i 6 ∂ −m)ψ1 + ψ̄2(i 6 ∂ −m)ψ2 + gbψ̄1γµψ1ψ̄2γ
µψ2. (1)

Except for the massive Thirring model, most known integrable models with several fermion
species do not contain an explicit mass term: the Gross Neveu models, theSU(2) andU(1)
Thirring model etc all exhibit spontaneous mass generation. The model (1) is quite different
in nature and it had not been clear until that paper what sort of ‘family’ of integrable theories
it belonged to.

In their original paper, BL succeeded in diagonalizing the model (1) with the coordinate
Bethe ansatz method. They only worked out half of the solution however, i.e. building
the ground state, but stopped short of discussing the physical excitations. Although there
are well established methods to do so in principle [2, 3], in practice, the Bethe equations
written by BL are complex, leading to a bewildering array of excitations, where it is hard to
identify fundamental particles, bound states, and ‘pseudo-particles’ arising from nondiagonal
scattering. Certainly, the lack of a quantum group understanding of the equations in [1] did
not help in that endeavour.

In the last few years, a growing suspicion has mounted that maybe the BL model was
not solvable after all. When naively bosonizing (1), one obtains a double sine–Gordon model
which indeed appears to be nonintegrable classically [4]. Worse, this bosonized model also
appears to be nonintegrable (this aspect has again been emphasized very recently in [5]) within
the framework [6] of conformal perturbation theory. The purpose in this letter is to show the
simple way out of these difficulties, and to complete the solution of the BL model by computing
the physical excitations and their factorizedS matrix.

To start, I recall the Bethe ansatz solution of [1]. Writing the energy

E =
∑
j

m sinhyj (2)
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the equations quantizing allowed momenta are

exp(−imL sinhyj ) = −
l∏

r=1

sinh
(
yj − zr + i g2

)
sinh

(
yj − zr − i g2

)
n∏
j=1

sinh(zs − yj + i g2)

sinh(zs − yj − i g2)
= −

l∏
r=1

sinh(zs − zr + ig)

sinh(zs − zr − ig)
.

(3)

In the latter equations, I have slightly changed the notation as compared with [1]. I have
introduced the couplingg, whose exact relation to the bare couplinggb in (1) depends on the
regularization used in solving the coordinate Bethe ansatz equations (it is, quite confusingly,
denoted by the same symbol in [1] however!). Compared with equations (81), (82) in [1], I
have also switched the sign of the coupling constant, and will moreover restrict myself to the
caseg > 0 here (that is,g < 0 in notations of [1]). I have set theirvr = zr − ig

2 . Finally,
I have chosen antiperiodic boundary conditions for the fermions. If I callNi the number of
fermions of typei, thenN2 = l andN1 = n− l in (3).

While BL used a sharp cut-off regularization, I would like to proceed slightly differently,
and introduce the cut-off3 at this early stage, as was done for the Thirring model in [7].
One has sometimes to be careful with the choice of cut-off: for instance, it leads to drastic
differences in the physical properties of the Thirring model in the repulsive regime [7, 8]. I
have however checked in this particular case that whatever procedure gives identical results;
the reason why I want to use the smooth cut-off of [7] is to facilitate later comparisons with
lattice models. I will thus replace the left-hand side of the first equation in (3) as

exp(−imL sinhy)→
[

sinh 1
2

(
yj −3 + i g2

)
sinh 1

2

(
yj −3− i g2

) sinh 1
2

(
yj +3 + i g2

)
sinh 1

2

(
yj −3− i g2

)]L/2a . (4)

When3 is large,a (having the units of length) is small andy � 3, this reproduces the
previous term, together with the correspondence

m = 2
e−3

a
sin

g

2
(5)

while divergences are smoothly cut-off at large values ofy. I will similarly use for the energy
the derivative of the momentum read off from (4), that is

m coshyj → 1

2
sin

g

2

[
1

cosh(yj +3)− cosg2
+

1

cosh(yj −3)− cosg2

]
. (6)

I can now proceed and study the physics encoded in these equations. As pointed out in
[1], it is easy to check that the ground state is obtained by filling up a sea ofyj antistrings,
together with a sea of real (one-string)zr . A first possible strategy now is to study the possible
physical excitations obtained by making holes, adding other types of strings etc, and to try
to extract theirS matrix. This turns out to be a rather confusing task however, for a reason
that we will understand easily later: whateverg, the scattering is not diagonal, and there is a
complex spectrum both of bound states and pseudo particles.

To make progress, I will instead use the approach pioneered by Pearce and Klümper
[9], and, independently, by Destri and de Vega [10], which has since been widely used to
tackle theories with complicated scattering [11]. After the usual manipulations, the KPDDV
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equations read

f (y) = iL2M cos
πg

2
sinhy + 2i

∫
dy ′811(y − y ′)Im ln(1 + e−f (y

′−i0))

+2i
∫

dz812(y − z)Im ln(1 + e−g(z−i0))

g(z) = iLM sinhz + 2i
∫

dz′822(z− z′)Im ln(1 + e−g(z
′−i0))

+2i
∫

dy 812(z− y) Im ln(1 + e−f (y−i0)).

(7)

where I have setM = m
cosπg2

. The energy then reads

E = L

π

[
2M cos

πg

2

∫
dy sinhyIm ln(1 + e−f (y−i0))

+M
∫

dz sinhz Im ln(1 + e−g(z−i0))

]
. (8)

In (7) and (8), the integrals are running from−∞ to∞. In these equations, the kernels are
given by, settingg = 2π

t
, t a real number,

8̂11 =
sinh (t−2)x

2

sinh (t+2)x
2

822 = sinh2 x

sinh (t−2)x
2 sinh (t+2)x

2

812 =
sinh tx

2

sinh (t+2)x
2

(9)

where we have introduced the Fourier transformf̂ (x) = 1
2π

∫
f (y)eixy/π .

Two things can be rigorously deduced from these equations. The first is that the UV limit
(m → 0) of the theory has a central chargec = 2, as expected from (1). The second is that
the physical mass is simply proportional to the bare mass, not a power of it: this means that
in the physical (renormalized) theory the BL equations are describing (I will return to this
issue later), the operator perturbing the UV fixed point must have scaling dimensionsx = 1,
irrespective ofg.

Besides, extracting the scattering theory from the KPDDV equations is still a matter of
guess work. So far, these equations have had the very simple feature that they contain only
the most ‘basic’ ingredients of the theory: the fundamental particles and theirS matrix. In the
sine–Gordon case for instance [11], the right-hand side would involve only one type of terms
(only one distribution function), with kernel8 = 1

i
d

dy ln S++, S++ the soliton–soliton scattering
matrix,y the rapidity.

In this case, I claim that we can interpret the equations as follows. First, I observe that,
writing

sinh2 x

sinh (t−2)x
2 sinh (t+2)x

2

= sinhx

2 coshtx2 sinh (t−2)x
2

− sinhx

2 coshtx2 sinh (t+2)x
2

we can identify the822 terms in the KPDDV equations as822 = 1
i

d
dy ln[Sβ̂1

++S
β̂2
++]. Here, I have
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introduced the two parameters (recallg = 2π
t

)

β̂2
1 ≡ 4π

t − 2

t − 1

β̂2
2 ≡ 4π

t + 2

t + 1

(10)

while by Sβ I denote theS matrix for an ordinary sine–Gordon theory whose parameter isβ

[12] (that is, the dimension of the perturbing operator isx = β2

4π ):

S
β
++(y) = exp

[
i
∫ ∞
−∞

dξ

2ξ
sin

2yξµ

π

sinh(µ− 1)ξ

sinhξ coshµξ

]
µ = 8π − β2

β2
. (11)

This leads to my basic guess: the physical theory is made up of four particles (kinks) of mass
M carrying apair of quantum numbersQ1,Q2 = ±1 (how these are related to the original
problem will be discussed soon), and which scatter with theS matrix

S = Sβ̂1 ⊗ Sβ̂2. (12)

Notice thatβ̂2
1 < 4π while β̂2

2 > 4π for t ∈ [2,∞). Therefore, while the secondS matrix
in (12) is in the repulsive regime, the first one is in the attractive regime, and therefore will
exhibit bound states. In the KPDDV equations,neutral bound states do not show up. Here
however, because there are two charges, it is reasonable that the ‘basic charged’ bound states
should also appear. In fact, one easily checks that the second mass in our equations, 2M cosπg2 ,

is precisely the mass for the first bound state in a SG theory with scatteringSβ̂1. Moreover,
one can also check that the kernels811 and812 are the exact kernels one would obtain when
scattering one of our bound states with either another bound state, or a basic kink. In doing this
check, one should not forget that, althoughSβ̂2 has no bound state, it of coursedoescontribute
to the overall scattering of bound states. For instance,812 arises from the scattering matrix

S
β̂1
b+(y)S

β̂2
++(y − iπ

t
)S
β̂2
++(y + iπ

t
), whereSb+ is the soliton one-breatherS matrix in the usual

sine–Gordon model with parameterβ̂1.
The claim (12) therefore appears to be at least reasonable from that perspective. What

I have done next is go backwards, and have checked it carefully against the Bethe equations
by using the more traditional method of identifying the basic excitations and computing their
scattering. Equation (12) turns out to be perfectly confirmed. I found out, in particular, that
making a hole in thez distribution produces a fundamental kink, while making a hole in the
y distribution produces a fundamental bound state (observe this is true providedt < ∞, that
is g > 0. The free limit is singular from the point of view of the Bethe equations, which
does not help in analysing them). Other bound states are obtained by complex distributions of
roots (in particular ‘strings over strings’) which do not seem that interesting to discuss here.
An additional result (which could have also been obtained by adding magnetic fields in the
KPDDV equations) is the charge of the fundamental kinks in terms of the original charges:
one has

Q1 = β2
2

2π
(N1 +N2)

Q2 = β2
1

2π
(N1−N2).

(13)

Here, I have introduced still other parameters, for a reason that will hopefully become clear
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soon:

β2
1

2π
≡ β̂2

1

8π − β̂2
1

= t − 2

t

β2
2

2π
≡ β̂2

2

8π − β̂2
2

= t + 2

t
.

(14)

Notice that ast →∞,Q1→ N1 +N2,Q2→ N1 − N2, so the basic particles coincide with
the four elementary fermions in that limit.

At this stage, the alert reader will have no doubt recognized that the scattering theory
we have extracted from the BL equations is nothing but the scattering theory for the double
sine–Gordon model [13] (a particular case of a general model studied by Fateev [14]), whose
renormalizedLagrangian reads, after bosonization

L = 1
2∂µ∂

µφ1 + 1
2∂µ∂

µφ2 +3 cosβ1φ1 cosβ2φ2 (15)

with

β2
1 + β2

2 = 4π. (16)

The notations are of course chosen so that (16) matches (14). In particular, the conditions (16)
mean that the dimension of the perturbing operator in (15) isx = 1.

In fact, this result is not so surprising. It is easy to check, at least if one requires the
existence of a conserved quantity of spin three, that the only nontrivial manifolds where the
double sine–Gordon model is quantum integrable are given by (16) and, maybe, the other
manifoldβ2

1 + β2
2 = 4π .

From that perspective, however, the naively bosonized theory associated with (1)
corresponds to1

β2
1

+ 1
β2

2
= 1

π
, and looks completely baffling! What happens is, I think, quite

simple. In the coordinate Bethe ansatz, one always deals with abareLagrangian, that is then
regularized by using a particular prescription: making sense of terms likeδ(x)sign(x) when
one solves the Bethe equations, and introducing a cut-off in the rapidity integrals. There is
of course no reason why the resulting large distances properties should be described by a
renormalized theory whose parameters are the same as the bare ones! This well known fact is
hammered home by the example of the ordinary Thirring model (with four fermion coupling
gT ): Korepin for instance [2] found thatβ2 = 4(π − gT ), (Bergknoff and Thacker [15] have a
different result) which differs from Coleman’s [16] famous correspondence,β2 = 4π

1+gT
π

. None

of this is in the least suprising of course, and it did not matter very much until now, because the
models one was dealing with were always integrable anyway; it was just a matter of knowing
which particular point in one language corresponds to which particular point in the other.

Things are very different here, since the models of interest are integrable only in a subset
of the whole parameter space: Lagrangians have to be specified much more carefully, and the
integrable theory might look quite different depending on which point of view one adopts. In
bosonization, as well as in conformal perturbation theory, one usually deals withrenormalized
theories. There is thus no reason why, by naively bosonizing the bare Lagrangian of BL and
interpreting it at face value for a renormalized Lagrangian, one should find a theory that is
integrable in conformal perturbation theory. In other words, the bare Lagrangian they wrote,
together with the regularization they used, defined an integrable quantum field theory, and in
that sense, the BL model is integrable†. It was, however, misleading of the authors in [1] to
proceed with bosonization, and the final double sine–Gordon model they wrote down, with
1
β2

1
+ 1
β2

2
= 1

π
, cannot be expected to be integrable.

† Classical integrability, as checked in [5], also follows.
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The only proper way to proceed, once faced with (1), is to identify the scattering theory
by studying the bare and physical Bethe ansatz equations. Once theS matrix (12) is obtained,
one can for instance observe that it has affine quantum group symmetryŝlq1(2) ⊗ ŝlq2(2)
[13]; this, together with the fact that the dimension of the perturbing operator isx = 1, leads
unambiguously to (15) with (16). After refermionization, (15) reads as (1) with the additional
appearance of terms(ψ̄iγµψi)2. These terms come with a coefficient of orderg2

b at small
gb—as in the Thirring model, renormalization effects are seen only at higher orders, and at
leading order in the bare coupling constant all models are equivalent.

To make things more concrete and somewhat more rigorous, I would like to finally point
out that the problem I have been discussing can be studied quite explicitly with a lattice model
regularization. As discovered in [17], the following Hamiltonian, obtained from a twisted
Ospq(2/2)(2)R matrix [18], is exactly solvable:

H =
∑
j,σ

(c
†
j,σ cj+1,σ + cc)(1− nj,−σ − nj+1,−σ − σV1(nj,−σ − nj+1,−σ ))

+V2

∑
j

(c
†
j,+c

†
j,−cj+1,−cj+1,+ − c†

j,+c
†
j+1,−cj+1,+cj,− + cc)

+V2

∑
j

(nj,+nj,− + nj+1,+nj+1,− + nj,+nj+1,− + nj,−nj+1,+ − nj − nj+1 + 1)

(17)

wherenj,σ = c†
j,σ cj,σ , V1 = sinγ , V2 = cosγ , g = eiγ . By using the well known techniques

(see e.g. [19]) to take the continuum limit of this model at smallV1,V2 (both negative) and half
filling, and keeping only the relevant or marginal terms, I have found that (17) exactly gives
rise to (1), withgb ∝ −V2 andm = 0 (the complicated fine tuning in (17) cancels out the terms
that would induce a gap in the similar looking Hubbard model). Of course, there is an infinity
of additional irrelevant couplings, that will give rise to renormalized coupling constants: this
is very similar to what happens in theXXZ model say, but here, this renormalization changes
the form of the naive interaction quite a bit. By using the Bethe ansatz equations written in
[17], I have checked that the CFT associated with (17) corresponds to the3→ 0 limit of (15).
It is in fact possible to also put a mass term in the lattice model by using an inhomogeneous
distribution of spectral parameters as in [20]; the bare Hamiltonian looks then as (1), while the
Bethe equations are identical with those I used before (3 being then, as in [20], a measure of
the inhomogeneity, anda the lattice spacing).

In conclusion, it is a bit disappointing to realize that we have only one integrable manifold
in the double sine–Gordon model†, the appealing but mysterious one hinted at in [1] finally
coinciding, after proper analysis, with the one in [13, 14]. On the other hand, I hope that this
discussion will led to further progress in understanding theories with several bosons. As far as
theO(3) sigma model is concerned, it seems that the Bukhvostov Lipatov approach was almost
right after all; according to recent work of Al Zamolodchikov [21], the proper theory describing
the instantons anti-instantons interaction differs from (15), (16), by the simple replacement
β2→ iβ2.

This work was supported by the DOE and the NSF (under the NYI program). I thank A Leclair,
V Korepin, F Lesage, B Mac Coy, M Martins and Al Zamolodchikov for discussions.

† There are growing indications that the manifoldβ2
1 +β2

2 = 8π is not integrable; note that the conformal perturbation
theory argument is rather weak in that case, due to the operator having dimension one.
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